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Tests for the Extreme Value and Weibull Distributions

Based on Normalized Spacings

By

R.A. Lockhart, F. O'Reilly and M.A. Stephens

1. INTRODUCTION.

In this article we compare tests of the null hypothesis H0  that

a sample, which may be censored at one or both ends, comes from an

extreme-value distribution with unknown location and scale parameters;

such tests can also be used to test that observations come from a

Weibull distribution with origin zero, and scale and shape parameters

unknown. Such tests of H0  are important in many applications, in

particular in reliability theory and survival analysis.of

We first discuss a class of tests based on normalized spacings,

that is, on the spacings between the ordered observations, standardized

by dividing by known constants. Such spacings are transformed to a set

of values zi between 0 and 1, and test statistics are calculated

from these. Two such tests have been suggested by Mann, Scheuer and

Fertig (1973) and Tiku and Singh (1981); these are the tests based

respectively on the median and on the mean Z of the z.. Asymptotic

distributions for these statistics are given; it is also shown that they

may be not consistent or biased. We propose the use of the Anderson-

Darling statistic A2 based on the zi, and asymptotic distribution

theory and percentage points are given for various censoring patterns.
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A2 gives a consistent and unbiased test. Finally we compare the above

three statistics for power with two others which have been proposed

for testing the Weibull or extreme-value distributions.

The practical application of the normalized spacings tests is

discussed in the next section; distribution theory follows in Section

3, and the power comparisons, based on Monte Carlo studies, are described

in Section 4. The recommended test overall is A2; although for the

alternatives considered Z has good power, it is less attractive

because of its possible non-consistency. Another version of A2

introduced by Stephens (1977) does well, but is not available for censored

samples.
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2. TEST PROCEDURES.

2.1. Calculations.

Let x (k),X(k+l),...X(k+t+l) be t+2 order statistics of a

random sample of size n which is left and right Type 2-censored.

We wish to test the null hypothesis

H0: the original sample comes from the extreme-va. istribution

(1) F(x) = 1-exp[-exp{(x-a)/8}], -C < x < CO

The test statistics are calculated as follows.

(a) Calculate t+l normalized spacings.

(2) Y.={x (k+j)-x(k+l)/(mk+mk+.l) = j1...,t+l

where mi is the expected value of the i-th order statistic of a random

sample from F(x) in (1) above, with a = 0 and 8 = 1. Values of m.1

have been tabulated by White (1967) and by Mann (1968). Values of the0

difference mi-mi I are tabulated for n = 3(1)25, by Mann, Scheuer

and Fertig (1973). For n > 25 an approximation for mi has been

given by Blom (1958, p. 73 ff.):

mi = log[-log{l-(i-O.5)/(n+0.25)}]

where log refers to natural logarithm. This approximation appears to be

adequate for the present use.

3



(b) Let T. be the partial sum T i = y. (so that T is1 i jl yj (oha Ti+l i

the sum of all the y.) and define
(3) z T Ti/T i+11 i= l,...,t

Note that the zi are in ascending order.

(c) The three statistics here considered are A2 , S and.

X (4) 2 t_1[S= - (2i-l){log z.+log M;

i=l 1 t+l-i

A2 is the Anderson-Darling statistic calculated from the z-values.

Also

* (5) S= -z

where s = (t+2)/2 if t is even, and s = (t+l)/2 if t is odd; and

K t

(6) z z/t
i=1

Clearly Z is the mean of the z. and z is essentially the median,
1 5U so that S is equivalent to the median.

2.2. Application of the tests.

For the test based on A2 , H0 will be rejected if A exceeds

the value given, for the desired level a, in Table 1. The table gives

S4



2
asymptotic critical points for , but can be used with high accuracy

for n > 20. The table is entered at p = k/n and q - (k+t+l)/n;

the table is easily interpolated for values of p and q not given.

Statistic S was introduced by Mann, Scheuer and Fertig (1973; see

also Mann, Fertig and Scheuer, 1971) for right-censored samples only:

note that their m = t+2. A statistic proposed by Tiku and Singh (1981),

and there called ZW, can be shown to be 2Z.

In general, to guard against all alternatives, both S and

should be used as two-tail tests. However, Mann, Scheuer and Fertig

were testing for the Weibull distribution (see below) and intended S

to be used as a one-tail test, with large values significant, for the

alternatives they wished to detect; they give Monte Carlo points only

for the upper tail of S, for 3 < n < 25. The large-sample distribution

of S is discussed in Section 3 below.

Tiku and Singh suggested an accurate normal approximation for ZW

which would give for Z the normal approximation Z " N(0.5,V); V

depends on the mi, and also on the variances and covariances of standard

extreme-value order statistics. The calculation of V is quite compli-

cated, and a simpler normal approximation is given in Section 3.

2.3. Application to testing for the 2-parameter Weibull distribution.

The above tests may be used for the 2-parameter Weibull distribution

with unknown scale parameter 6 and shape parameter Y

(7) F(w) 1 - exp{-(w/6) I, w ' 0

5
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the random variable x = log w has the distribution (1) with a = log 6

and B = 1/y. Thus a censored sample W(k),...,w(k+t+l), to be tested

to have distribution (7), is transformed to x (k) = log W(k),

X(k+l) = log W(k+l),.... and the x-set is tested to come from distri-

bution (1).

2.4. Example.

Table 2 gives values of a right-censored sample of ignition times,

given by Mann, Scheuer and Fertig. The sample size is n = 22, and

times w(1),...,w(15) are available, to test that the distribution of

w is two-parameter Weibull. The table also gives values of logw ,

the normalized spacings y, and the values z. The value of A2 is

1.878, and reference to Table 1, with p = 0 and q = 15/22 suggests

a significance level of about 10%. The median is 0.3394 and S 0.661;

reference to the Mann, Scheuer and Fertig tables show S to be signi-

ficant at about the 11% level. Statistic Z equals 0.380; this is

significant at about the 12% level in the lower tail. If, as is

suggested by Mann, Scheuer and Fertig, S should be used as a one-tail

statistic, then Z would be used similarly, with low values of

(as here) leading to rejection of the hypothesis that the ignition

times have a two-parameter Weibull distribution, in favor of a distri-

bution like a three-parameter Weibull alternative with positive origin.

For a two-tail omnibus test, the significance levels of S and Z

2
will be doubled, and A is then more sensitive than either of these.

In general, the power studies in Section 4 shows A2 and Z to be more

sensitive than S.

6



3. DISTRIBUTION THEORY AND TABLES.

3.1. Normalized spacings: asymptotic theory.

If the original sample x(k),..X(k+t+l) were from an

exponential distribution with origin 0, and mean a, written Exp(O,a),

the normalized spacings would be i.i.d. exponential Exp(O,a) and the

zi would have exactly the joint distribution of uniform order statistics

from a sample of size t; an individual z. would have a Beta distri-1

bution. More generally, and subject to important conditions particularly

affecting the extreme spacings, suitably separated normalized spacings

0from any continuous distribution are asymptotically independent and expon-

entially distributed with mean 1; (see Pyke, 1965, for rigorous and

detailed results). The conditions on this result are sufficiently

strong, however, that the transformed values zi, when the x(Q) come

from a distribution other than the exponential, must not be assumed to

be distributed as uniform order statistics, even asymptotically, for

the purpose of finding distributions of test statistics. The situation

is somewhat similar to tests involving unknown parameters when EDF

statistics are used; even if the parameters are estimated efficiently,

the asymptotic distributions of test statistics are not the same as they

are when the parameters are known.

The authors have examined the asymptotic properties of normalized

spacings elsewhere (Lockhart, O'Reilly and Stephens, 1984), and from

these results the asymptotic distributions of A2 , S and Z have

been derived for a number of parent populations, in particular the

extreme-value, normal and logistic populations. Mathematical details

7
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of the distribution theory have been omitted from the present article,

where the emphasis is on practical aspects of the tests.

Statistic A2 . The asymptotic null distribution of A2 is a sum of

weighted X2 variables, with weights depending on the parent population

and also on the censoring levels. The points given in Table 1 were found

by calculating the weights for the extreme-value distribution;

the percentage points can then be approximated very

accurately, as described by Lockhart, O'Reilly and Stephens (1984). Monte

Carlo results for finite n suggest that the points in Table 1 can be

* used to good accurancy for n > 20. It is worth noting that, if the z.

were uniform order statistics, the points in Table 1 for p = 0 and

q = 1, would be those for A2, Case 0, given for complete samples in

Stephens (1974), whereas in fact they are quite different; in the next

section we see that there are differences also for S and Z. These

differences demonstrate the remark above, that the z. cannot be treated

as uniform order statistics, even asymptotically.

Statistics S and Z. Under regularity conditions, the asymptotic

distributions of both S and Z under the null hypothesis are normal

with mean 0 and variance determined by the parent population and the

censoring levels. For S, this leads to the following large sample

* approximation. Let

*

(8) S = C t (S-0.5) if t is odd;

0
= C t [S-0.5+l/2(t+i)}] if t is even

8
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percentage points of S * are then well-approximated by those of the

standard normal distribution for t > 20. The values of C can be

found from the formula for the asymptotic variance of S, given by

Lockhart, O'Reilly and Stephens (1984). For the extreme-value distri-

bution, and for a complete sample, C = 2.233; for a right-censored

sample the value of C diminishes steadily towards 2.0, as q, the

proportion of sample uncensored, diminishes from 1 to 0.

If the z. were uniform order statistics the distribution of S

in (5) would be a Beta distribution with parameters (t+l)/2, (t+l)/2

when t is odd, and t/2, (t+2)/2 when t is even. Mann, Scheuer

and Fertig (1973, p. 390; also see Mann and Fertig, 1975, p. 239)

suggest the use of this approximation for large n, and find good agree-

ment with Monte Carlo points for S even for quite small n. However,

for large samples, the Beta approximation gives the incorrect result

that S, = 2t (S-0.5) is approximately standard normal. This result

would be true regardless of the censoring pattern, and we shall see a

similar result for Z below. Thus the Beta approximation essentially

gives C = 2 in (8) above, instead of C > 2; this leads to a

conservative test, with an error in significance level which depends

on the censoring pattern. For example, for a right-censored sample, the

error grows larger with the fraction of available observations, and with n.

For statistic Z, the normal approximation is that, for large t,

(9) Z = Kt (Z-0.5)

has a standard normal distribution, where K depends again on the parent

9



population and on the censoring. Table 3 gives values of K for some

censoring fractions p and q. (If the z. were uniform order1

statistics, K would always be /12 = 3.464.) Table 3 permits some

limited comparisons with critical values for 2Z given by Tiku and

Singh, p. 911. For example, for n = 20, with k=3 and k+t+1=18, we take

p = .15 and q = .85, and interpolation in Table 3 suggests K z 3.77;

using t = 14 in (9), we have for the upper 2.5% point for Z

the value 0.639; Tiku and Singh give .641, and the difference in

a-levels is 0.002. Similar comparisons indicate that (9) may be used

with good accuracy for n > 20.

In Lockhart, O'Reilly and Stephens (1984) some examination is

made also of the distributions of S and Z when the null hypothesis

- is false; these are again asymptotically normal, and for tests of

*normality against some symmetric alternatives asymptotic power can be

calculated. The calculations show that Z and S may sometimes not

be consistent; used with one tail, S can also be biased. We return

to these possibilities in the next section.

,,
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4. PERFORMANCE OF TEST STATISTICS.

4.1. Power Comparisons.

- A large Monte Carlo study has been conducted to compare the three

statistics above; also included were the correlation coefficient R,

between the values x (i) and Hi = log[-log{l-i/(n+l)}], and the

2Anderson-Darling statistic A , used as described in Stephens (1977).

The R test is based on the fact that x'i) plotted against m. should

be close to a straight line; H. is a convenient approximation to mi.
1

and a low value of R indicates a bad fit. Tables for R have been

2given by Smith and Bain (1976), and more extensive tables of n(l-R 2)

by Stephens (D'Agostino and Stephens, 1985). For the Stephens (1977)

A2 test, the parameters a and B in (1) must be estimated from the

-' sample by maximum likelihood; then the probability integral transform

'.= F(xi W), i=l,...,n, is made, using these estimates in F().

2Finally A is calculated from the z. using the formula (4) with

t = n and z. replacing z.. This is the customary way to deal with1 1

unknown parameters when using EDF statistics, and special tables of

* critical points must be produced. These are given in Stephens (1977),

for complete samples only, for A and two other EDF statistics,

ad 2
and U ; points for the Kolmogorov D and Kuiper V are given in

* Chandra, Singpurwalla and Stephens (1981). Experience with tests for

other distribtuions suggests that this version of A2  is likely to be

a good statistic in terms of power. Mann, Scheuer and Fertig also used

EDF statistics in this way in their power comparisons using S.-In the present

~y.ii
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study, only complete samples were compared; our alternative distribu-

tions included those used by Mann, Scheuer and Fertig, and also others

examined by Littell, McClave and Offen (1979) and by Tiku and Singh

(1981).

Table 4 reports the power results for complete samples of size

n = 20 and n = 40 using 5% tests, and using 5000 Monte Carlo samples
A22

for each run. A refers to the A2 suggested in this article, and
2 A2

A1  to A using estimated parameters as described above.

Mann, Scheuer and Fertig had in mind a test of the two parameter

Weibull distribution, which in the form (7) has a long tail to the right,

with the alternative a three parameter Weibull distribution

(10) F(w) = 1 - exp[-{(w-a)/61}Y], w > a

this is referenced in Table 4 as W(c,6,y); in particular a was

assumed to be positive. For this test, S will be large when the alter-

native is true and so a one-tail test was suggested with S. It appears

that the one-tail test is appropriate for most of the alternatives here

listed. However, as was pointed out by Tiku and Singh, such a test will

lead to bias against some alternatives, so we record results both for S

used with one tail (S(l)) and with two tails (S(2)). Results are

available also for other test levels; they give a similar picture.

Studies were also made with sample size 10; these agree, for S and

2A1, and to within sampling fluctuations, with power tables given by

Mann, Fertig and Scheuer. The power results reported here also agree

with those of Tiku and Singh (1981).

12



4.2. Comments on Table 4.

(a) Of the three statistics based on normalized spacings, A2

and Z outperform S, even when S is used with a one-sided test.

2 does well, confirming the results of Tiku and Singh (1981); it

seems intuitively reasonable that Z makes better use of all the

observations zi  than does S, for most patterns of z-values. A2

and 2 are very close in terms of power, although A2 is superior

for the heavy-tailed Cauchy alternative.

(b) A1, is occasionally better than A2 and Z although to

offset this is the fact, pointed out by Mann, Scheuer and Fertig and

again by Tiku and Singh, that 2 is somewhat difficult to use because
1

of the necessity to estimate parameters; this objection does not apply

to A2 calculated directly from the same zi which must be derived

2to get S and Z, and the formula for A is simple and easily

programmable even on small calculators.

(c) The correlation coefficient R2 is occasionally powerful

but sometimes very weak; this test might improve if Hi were

replaced by the correct mi (tables for R have been given by Gerlach

0 (1979) for this case) but it seems unlikely that it will reach the

power levels of A and Z overall.

(d) Bias in S(1) is seen in the log X1  alternative to the

2
extreme-value distribution (or the X, alternative to the two-parameter

% Weibull). For the particular problem of testing two-parameter Weibull

against three-parameter Weibull, with right-censored data, Mann and

Fertig (1975) subsequently proposed a statistic which they show to be

13
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more powerful than S; this statistic is their P and is equi-

valent to using z5  above, with s much closer to t than t/2.

It seems likely that there would be some alternatives for which Pk,m

also would be biased and not consistent.

4.3. Bias and non-consistency: further remarks.

The results in Table 4 show that Z might be regarded as a serious

competitor to A2 for the alternatives given, but it has already been

suggested, based on results in testing normality, that there will be

some distributions against which tests based on 2 (or S) might not

* be consistent; then even a very large sample will not detect such an

alternative distribution, say F for X, with high probability, as

one would wish. We briefly illustrate this possibility, using Z;

similar remarks would apply to S. When the sample X comes from

F*, and Z is calculated as in Section 2.1, suppose the asymptotic

mean w of Z is 0.5 and let the asymptotic variance of t (Z-0.5)

be 1/K ; then the normal approximation (9) holds to high accuracy, with

K replacing K. Suppose a 5% test is made; it is easily shown that

the probability of rejecting H0 : the extreme-value hypothesis for X,

is twice the area in the standard normal tail beyond the value 1.96K 1/K,

and this will be a constant not necessarily near I - it could even be

less than 5%. A distribution for which this situation arises, where

* * cZ has the asymptotic mean u = 0.5, is F*(x) = l-(l-x) , with

'- c = l/9'2; the calculations to show this are complicated and are omitted

here. In statistical practice, it will not often occur that Z has

exactly p = 0.5, but even if, for a given F*, the value is close to

14



0.5, an enormously large sample would be needed to give good power

using Z against this alternative. Such problems do not appear to

have arisen for the alternatives used in Table 4, but in general

non-consistent tests are undesirable, and the possibility of such

occurrences must make Z less attractive than A2 overall.
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TABLE 2

(a) 15 smallest values of 22 ignition times w.

15.5, 15.6, 16.5, 17.5, 19.5, 20.6, 22.8, 23.1, 23.5, 24.5,

26.5, 26.5, 32.7, 33.8, 33.9.

(b) Values of log w: 2.741, 2.747, 2.803, 2.862, 2.970, 3.025, 3.127,

3.140, 3.157, 3.199, 3.277, 3.277, 3.487, 3.520, 3.523.

(c) 14 normalized spacings y: .0063, .1070, .1640, .3912, .2408, .5177,

.0752, .1089, .2858, .5724, 0.0, 1.6651, .2676, .0241.

(d) 13 values z: .0014, .0256, .0626, .1510, .2054, .3224, .3394, .3640,

.4286, .5579, .5579, .9341, .9946.

A2 = 1.878; S - 1-0.3394 - 0.661; - 0.380.

'I1



TABLE 3

Values of K for a large-sample approximation for Z (Equation (9)).

Censoring p 0.0 0.0 0.0 0.0 0.25 0.25 0.25 0.50 0.50 0.75

Fractions q 0.25 0.50 0.75 1.0 0.50 0.75 1.0 0.75 1.0 1.0

K 3.467 3.568 3.674 4.010 3.467 3.613 4.002 3.524 3.937 3.854

'0



TABLE 4

Power of 5 test statistics in a 5% test for the extreme-value distribution.
The results are the percentage of 5000 samples declared significant by the
statistic given. Z is a two-tailed statistic. S(1) and S(2) refers to S

using one or two tails.

Sample size n = 20

Statistic: A2 S(2) S(1) A2 R
Alternative 1

Exteme-value (null) 5 5 4.6 5 5 5

log W(l,l,l) 80 73 55 66 64 57

log W(1,1,2) 26 26 18 27 18 8

log W(l,l,0.8) 93 87 53 80 82 80

2
log X1  8 9 7 2 8 9

log 2 6 7 5 8 6 3

Double Exponential 47 47 31 42 48 31

Normal 37 39 19 34 32 19

Logistic 29 39 25 29 22 10

Cauchy 84 71 59 52 88 84

Sample size n = 40

Alternative

Extreme-value (null) 5 5 4.7 5 6 4

log W(I,l,l) 100 98 90 94 96 95

log W(1,1,2) 61 61 41 55 40 17

log W(1,1,0.8) 100 97 86 91 95 95

log 11 12 9 2 11 10

2
log X4 11 12 8 14 8 3

Double Exponential 77 76 61 70 78 46

Normal 68 70 45 59 59 30

Logistic 63 65 51 63 48 18

Cauchy 98 82 73 66 100 98

SW(S,,y) refers to the distribution (1). The last four distributions have

location parameter 0 and scale parameter 1. 19
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